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Experiments have been conducted to determine the effect of density stratifica- 
tion upon certain characteristic features of so-called Taylor columns. The interior 
structure of the homogeneous Taylor column is first of all described and com- 
pared with flow patterns obtained when the fluid is stratified. Qualitative features 
of the horizontal and vertical motion (in particular, the attenuation with height 
of the distortion created by the obstacle) are then described for values of the 
stratification parameter S (defined as S = N/2!2, where N and s2 are the Brunt- 
Vaisala and rotation frequencies respectively) in the range 0 < S < 0.24. The 
effect of density stratification upon, specifically, the length of the column is 
then described. A working definition for the existence of a Taylor column in 
a given experimental situation is formulated, enabling the strength of the 
column to be quantified at a particular height above the obstacle. Using this 
method the column length is measured as a function of Sin the range 0 < S < 0.24. 
It is shown that even very slight stratification is sufficient to produce noticeable 
modification of all aspects of the flow. In  particular, the column length is con- 
siderably reduced by weak stratification. 

1. Introduction 
The flow associated with the slow, steady, horizontal motion of a solid obstacle 

through a fluid rotating about a vertical axis has been considered. If the motion 
is steady and the fluid is homogeneous and inviscid, the Taylor-Proudman 
theorem (Proudman 1916; Taylor 1923) predicts that the imaginary upright 
cylinder circumscribing the obstacle can separate the flow into two regions. 
Outside this imaginary cylinder the fluid flows around it as if encountering a solid 
cylinder extending throughout the depth of the fluid, whilst inside the cylinder 
the fluid is at relative rest and moves with the obstacle. Such a cylinder is 
commonly referred to as a Taylor column after Taylor (1923), who first demon- 
strated the phenomenon. (In fact, strictly speaking, the Taylor-Proudman 
theorem does not predict that the fluid inside the column must necessarily be 
stagnant; any flow satisfying continuity with the streamlines following contours 
of constant depth is possible.) 

Following the original experiments of Taylor, several attempts have been 
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made to solve the problem theoretically (e.g. Stewartson 1953, 1967; Jacobs 
1964a). Each of these theoretical attempts has been characterized by the par- 
ticular ageostrophic term retained to remove the degeneracy inherent in the 
Taylor-Proudman theorem and by the particular geometrical configuration con- 
sidered. [For a comprehensive bibliography see Hide, Ibbetson & Lighthill 
(1968).] Following a suggestion of Hide (1961) that the Great Red Spot on the 
planet Jupiter could be evidence of a Taylor-column-like phenomenon in the 
Jovian atmosphere, the original experiments of Taylor were repeated and ex- 
tended (Ibbetson 1965; Hide & Ibbetson 1966; Hide et ab. 1968). It was estab- 
lished (see also Vaziri & Boyer 1971) that in laboratory situations the fluid within 
the column was never stagnant, but had a rather complicated flow structure, 
even though ageostrophic effects were small. The dependence of certain features 
of this interior flow structure upon the relevant non-dimensional parameters 
of the problem was investigated. In  view of the importance of both rotation and 
stratification in certain geophysical situations, much of the work on the Taylor 
column problem, including the present study, has been at  least partly motivated 
by geophysical considerations. The steering of oceanic and atmospheric flows 
by bottom topography, for example, has been discussed specifically in terms of 
the Taylor-column phenomenon (by Stone & Baker 1968; Hide 1969, 1971) and 
more generally by Warren (1963,1969), Robinson (1960), Hide (1963) and Jacobs 
(1964 b).  

In this paper we are concerned with the effects of varying degrees of density 
stratification upon the Taylor column (unless otherwise specified, ‘ Taylor 
column ’ will be taken to mean the imaginary upright cylinder circumscribing 
the obstacle). In  the first part of the paper ( Q Q P 6 ) ,  following the introduction 
and definition of the basic parameters in $ 2  and the description of the apparatus 
in $3,  the influence of the stratification on the horizontal and vertical flow 
patterns is described. For purposes of comparison the complete three-dimensional 
flow pattern for the unstratijed case is first of all described and compared with 
the results obtained by previous workers. The stratified and non-stratified flow 
patterns are compared qualitatively and their attenuation with height, for a par- 
ticular value of 8, is described. In  § 5.1 quantitative measurements of the decay 
with height of the vertical motion above the obstacle are presented and com- 
pared with results for the unstratified case. 

In  the second part of the paper measurements of the length of the Taylor 
column as a function of the stratification parameter S are presented. Because 
the fluid within the Taylor column is not stagnant for very small but finite 
Rossby and Ekman numbers, it is first of all necessary to  formulate some criterion 
for the existence of a ‘laboratory’ Taylor column in a given experimental situa- 
tion. This ‘working definition’, based upon the actual flows occurring in the 
column interior, then enables the length of the column to be quantified and the 
consequent modifications brought about by stratification to be gauged. 

In $ 8  of this paper, following the definition and discussion of the criterion 
adopted, experimental results are presented. Section 8.2 describes the decay with 
height of the Taylor column above a sphere, in terms of this criterion, for 
various 8. From these results, estimates are made of the column length in each 
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case. The length of the unstratified column, under otherwise identical experi- 
mental conditions, is also measured. In  $8.4 the data are re-calculated to 
determine the velocities in the interior of the column for different S and for various 
heights above the obstacle, and the results are compared with direct experimental 
determinations of these velocities. Using both sets of calculations estimates 
of Taylor column length as a function of S are presented. 

2. Basic equations and parameters of the problem 
The equations of motion and continuity of a fluid of kinematic viscosity v 

and density p, relative to a Cartesian co-ordinate system (x, y, z )  rotating with 
angular velocity (0, 0, a), are 

av 1 
- + v . v v i - 2 s 2 x v  = --vp-g+vv2v, 
at P 

v.v = 0, (2.2) 

(2.3) app t  + v . ~p = KVZP, 

where V = (u, v, w) is velocity, t is time, p is pressure, g is the acceleration due to 
gravity, and K is a diffusivity coefficient. I n  (2.1) the centrifugal force is in- 
corporated in g ; it is assumed that this does not make g significantly non-vertical. 

Considering steady motions and splitting the density and pressure fields as 
follows : A x ,  Y, 4 = Po + P ( z )  + P * h  Y, z ) ,  

P@, Y ,  2) = Po(4 + p * h  Y, 4, 
(2.4) 

(2.5) 

(2.1),  (2.2) and (2.3) become, within the Boussinesq approximation, 
* v . v v + 2 s 2 x v  = - -Vp*-Ek+vVaV,  1 

Po Po 
v.v  = 0, 

V .  vp* + w aplaz = Kvzp*, 

where k is a unit vector in the z direction. The quantitypo(z) in (2.5) is defined by 

aPo(z)laz = - g ( p o + P ( z ) ) .  

v = UV', v = ( l / L ) V ' ,  p* = 2QUpoLp*',  p* = 2QUpog-lp*', p = Rp', 

EV . VV + k x V = - Vp * - p* + EV'V, 

EV . vp* + s2w aplaz = ( T - I E V ~ ~ * ,  

With the introduction of the scaling 

(2.6)-(2.8) become (dropping primes) 

(2.9) 

v .v  = 0, (2.10) 

(2.11) 

where E = U[2QL, E = u/2QL2, = U/K and S = N/2Q,  with N ,  the Brunt- 
Viiisak frequency, given by N2 = gR/po L. In  the experiments to be described 
Q 1 and the effects of rotation and stratification dominate inertial and viscous 

effects. That is €41, E e l ,  S s l ,  
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FIGURE 1. Schematic diagram of the experimental apparatus. 

where E ,  E and S, as defined above, are the Ekman number, Rossby number 
and stratification parameter respectively. 

In  the special limiting case of E --+ 0 and e -+ 0 equation (2.9) reduces to the 
equation of geostrophy, and under the further constraint of S = 0, fluid motions 
obey the Taylor-Proudman theorem precisely. 

3. The apparatus 

main features of the arrangement were the following. 

a turntable B driven by an electric motor C. 

A schematic diagram of the experimental apparatus is shown in figure 1. The 

(a)  A Perspex tank A which could be filled with working fluid and rotated on 
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FIGURE 2. Details of the tank assembly. 

( 6 )  An obstacle D which could be differentially rotated through the fluid by 
means of a small d.o. motor E attached to the top surface of the tank. 

( c )  An arrangement for filling the tank A with fluid whilst the apparatus was 
rotating. Reservoir tanks F and G and the funnel H were the principal com- 
ponents of this assembly. 

(d)  A photographic arrangement J supported on vertical struts attached to 
the table at  its edges. [Details of the construction of the rotating table B and 
the accompanying slip-ring assembly have been described elsewhere (Davies 
197 1) .] 

The tank, which had a fixed base and removable top lid, was made from 1 cm 
thick Perspex and had a diameter of 61 cm and height of 30.5 cm. By being 
slightly raised above the table by three screw supports, it could be filled through 
a hole in its base whilst rotating. A white Perspex base plate, of slightly smaller 
diameter than the tank, was placed on 4mm spacers bolted to the top surface 
of the tank base; the small gap between, the tank wall and the edge of this base 
plate then allowed the main body of the working volume to be filled slowly with- 
out any disturbance from the inlet fluid. The arrangement for moving an obstacle 
slowly through the fluid can be seen on figure 2. In  this case the obstacle was 
a sphere P made of Perspex, which was attached to a central shaft K by a light 
radial arm. The centre of the sphere rotated in a horizontal plane, describing 
a circular path of radius r = R. The central shaft was driven by the miniature 
d.c. motor E through a flexible coupling Q and worm gear arrangement W and 
ran on two sealed bearings L and M .  

Horizontal flow patterns were recorded using a Nikon F 35mm camera ( J )  
mounted on the table, and photographs were also taken looking radially into 
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the tank using a second camera stationary in the laboratory. Light for the 
photography was provided by an array of 8 fluorescent lights attached to the 
rotating table. 

The tank was filled, whilst rotating, by the method of stratification described 
typically by Oster (1965). Concentrated salt solution (in these experiments 
calcium chloride was the salt used) and water were stored in reservoirs G and F 
respectively and, by suitably adjusting the reservoir taps and continuously 
agitating F, a linear density gradient could be produced in the tank A .  The tank 
was filled slowly (typically over 12 hours) to avoid excessive mixing and left to 
spin up to solid-body rotation. 

3.1. Flow visualization 

The method of flow visualization used throughout was the well-established pH- 
indicator technique (Baker 1966). A vertical array of horizontal dye-release 
wires Z (see figure 2) was supported on a rectangular, rigid frame and attached 
to the obstacle drive shaft K .  The array was off-set typically two sphere diameters 
in front of the obstacle, enabling dye to be released from the wires ahead of the 
sphere as it rotated. The wires, which were tautly attached to the rectangular 
frame, were situated a t  irregular but specified heights above the sphere and were 
insulated from each other because of the special construction of shaft K .  In  this 
way, by means of a switch and slip-ring assembly it was possible to scan vertically 
through the fluid and look a t  the flow a t  different heights independently. The 
wires used for the release of dye were 0.025 cm diameter copper wires and a d.c. 
potential could be impressed between them and a large brass ring electrode 
secured to the lower surface of the tank lid. In order to improve the dye ‘thick- 
ness’ when viewed from above, the dye-release wires had a rake-like form with 
small vertical prongs of the same gauge wire soldered along their length (see 
figure 2). Difficulties were encountered with bubbling at the electrodes because 
dissolved salt was used to stratify the fluid, and this limited the intensity of the 
dye produced. This necessitated rather careful titration of the solutions before 
mixing, and the use of low voltages. 

4. Experiments with X = 0 

In  order that meaningful comparison could be made between flow patterns 
observed in the cases S = 0 and S + 0, it was necessary, first of all, to determine 
the complete 3 dimensional flow field produced by the spherical obstacle, with 
the fluid unstratified. Some of the separate features of this ‘homogeneous ’ flow 
field have been investigated by earlier workers; for example the vertical motion 
in the Taylor column above a solid sphere was studied by Hide et al. (1968). 
By repeating some of these experiments and by qualitatively repeating with 
a spherical obstacle the earlier experiments of Hide & Ibbetson (1966) (who 
studied the flow over a right circular cylinder and over radial arms of various 
cross-section) the complete reference flow pattern could be determined. 
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(b) 

FIGURE 4. Schematic representation of the horizontal flow Dattern for S = 0. (a )  Definition . ,  
(RF = right front, LR = left rear etc.) of the system of reference used. The flow within the 
column interior is shown ( b )  schematically and (c) in terms of fi,fi and fs. 

4.1. Description of interior $ow structure for S = 0 

The values of the non-dimensional parameters e and E in the S = 0 experiments 
were used throughout the unstratified and stratified experiments, that is 

e = 8.8 x 10-3, E = 4.0 x 

The length scale on which the above parameters are based is a, the radius of the 
sphere (a = 1-9cm). Figure 3 (a)  (plate 1) shows a flow pattern obtained in the 
unstratified case looking down on the obstacle. In  this figure the dye has been 
released at  a height of one obstacle radius above the top of the sphere. When the 
fluid is homogeneous such horizontal flow patterns display the same gross 
features at all heights above the obstacle. However, changes in detail with 
height in both the horizontal and vertical flow fields are observed, as is described 
later in thir, section. 

Flow patterns such as that in figure 3 (a) showed strong similarities with those 
obtained by Ibbetson (1965) with cylindrical obstacles, especially in regard to the 
basic asymmetry of the flow and the rather complicated nature of the secondary 
flows within the column. Once the dye lines have penetrated the interior of the 
column they can be seen to be deflected horizontally as shown schematically in 
figure 4 (a). There is some vertical motion within the column also, such that the 
dye lines try to follow the contours of the sphere. This aspect of the flow has been 
extensively investigated by Hide et al. (1968). 

The region of three-dimensional distortion inside the column is quite well- 
defined, as can be seen from figure 3 (a). Relative to a frame of reference fixed 
in the obstacle, the magnitudes of the flows within the column are slow compared 
with the basic stream velocity and have directions very similar to those observed 
by Ibbetson (1965). The time development of the dye pattern has been observed 
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FIGURE 5. Diagram illustrating (a) horizontal and (a) vertical distortions experienced by 
dyelines (i) L1, (ii) L2and (iii) L3forsomegivenheightabovetheobstacle (whoseradiusisa). 

in order to obtain an estimate of the magnitudes of such ‘secondary’ flows. 
Because the degree of vertical distortion of a particular dye line in the interior 
of the column is determined by its initial radial displacement from the circle of 
radius r = R (see figure 4 (a))  the time development of each dye line is different 
until the overall dye pattern becomes steady. This development in time, for 
some chosen height above the obstacle, can be classified into three stages by 
considering typical dye lines such as the lines 1 , 2  and 3 (Ll ,  L2 and L3) shown in 
figure 5. The vertical distortion experienced by each of these lines, at this chosen 
height, is also illustrated on this figure (figure 5 (b) ) .  

Dye lines which have penetrated the column near its right-hand boundary, 
such as L1, undergo relatively small vertical movement and are only slightly 
horizontally deflected as shown. For dye lines originating nearer the centre-line, 
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r = R, there is larger vertical distortion in the column as a result of the surfaces 
of constant height being hemispheres. The maximum vertical distortion thus 
occurs in the neighbourhood of point B in figure 3 (a).  

A dye line such as L2 (see figures S(a,ii) and (b,ii)) is deflected horizontally 
much more sharply and its speed across the interior is correspondingly slower 
than that of Ll nearer the edge of the column. At the rear of the column there 
is some attachment to the column walls and, consequently, a rather ill-defined 
slow drift of fluid takes place through these walls. This feature of the flow, 
observed for all lines, is illustrated by shading on figure 5. 

Dye line 3 (see figures 5 (a, iii) and (b, iii)), which takes the longest time to 
traverse the column and which undergoes maximum vertical distortion, i.e. the 
dye line passing through point B on figure 3 (a),  is seen to be deflected almost back 
on itself at the rear left of the column. Under the influence of flow f3 (see 
figure 4 (c))  it  then moves back to the rear left and leaves the interior as shown 
on Sgure 5 (a, iii). 

The composite steady dye pattern, which can be said to be present when the 
critical dye line 3, passing through point B (see figure 3 (a)) ,  has traversed the 
column and escaped from the interior, was found to be set up in a time which 
implied a mean secondary flow across the interior of the order of U ( U  being 
the obstacle speed). The magnitude of this interior flow, and its dependence upon 
the relevant non-dimensional parameters of the problem, has subsequently been 
investigated more fully. 

Thus far, consideration has been given to dye lines originating at  the right-hand 
side of the column, i.e. at radii r > R. Dye lines which approach the left front of 
the column, i.e. those satisfying (R -a )  < r < R, did not appear to penetrate 
the column though, at the edge of the column, some downward vertical distortion 
could be seen. Although this aspect of the flow was not systematically investigated 
it seemed that, for a particular height above the obstacle, the magnitude of the 
downward distortion was less than, but of the same order as, 7, the upward 
distortion in the column interior. 

4.2. Variation of interior$ow structure with height for S = 0 

Some qualitative observations were made to determine any variations in the 
flow pattern with the vertical co-ordinate z. The gross features of the steering 
of the flow by the obstacle remained unaltered, except that the wake region 
extended further round towards the left rear of the column with increasing z 
(see figure 3(b) ) .  Measurements on the attenuation with height of the interior 
vertical distortion 7 showed good agreement with the results of Hide et al. (1968) 
in (a)  the form of the attenuation and ( b )  its E& dependence. 

Modifications to the horizontal structure of the interior flow were also observed 
as z increased. Whilst the pattern of penetration within the column still appeared 
to be quite well defined, dye previously released ahead of the column filled more 
of the interior than had been the case just above the sphere. This difference can 
be seen by comparing figures 3 (a) and ( b ) ;  figure 3 ( b )  shows the flow pattern at 
a height above the obstacle of approximately 7 obstacle radii. The flow directed 
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towards the interior from the left rear of the column, whilst still slow, is relatively 
much stronger in figure 3 ( a )  than in figure 3(b ) .  This results in the dye in 
figure 3 (b)  being able to drift further into the column, moving very slowly and 
spreading out considerably before being influenced by the reverse flow, denoted 
by f A, which takes it out into the main stream. This reverse flow f appears to  
originate much nearer the front of the column than does the analogous f3 in 
figure 4(c), such that an inner dye line turns almost to meet itself before being 
taken out of the interior. Figure 3 ( b )  shows a small, seemingly unpenetrated 
region within the column, and it seems probable that this is a region of closed 
streamlines analogous to such regions observed by Hide & Ibbetson (1966) in 
their experiments. 

5. Experiments with S $: 0 

After the three-dimensional flow field associated with the slow steady motion 
of a spherical obstacle through a rotating homogeneous fluid had been determined, 
the experiments were repeated with the fluid density-stratified. The degree of 
modification to the typical S = 0 flow pattern was, of course, dependent upon 
the values of S and x[a (the normalized distance above the top of the sphere, 
radius a )  in the particular experiment, as can be seen from figures 6-9. These 
figures each show, in sequence, the flow patterns obtained by releasing dye ahead 
of the obstacle at different heights in the fluid for values of S of 0.12, 0.13, 0.16 
and 0.26 respectively. All the sets of figures have been traced from photographs 
for clarity and the distances marked are vertical distances above the top of the 
sphere. Shading is used to represent the spreading of the dye and dotted lines 
are employed when the intensity of the dye was such that the path of the dye 
line was not completely distinct. 

Comparison of figures 6-9 with the corresponding figures for S = 0 (i.e. 
figures 3 (a)  and 3 ( b ) )  illustrates the important similar features in the horizontal 
flow patterns. Near the obstacle, when the fluid is stratified, for example, as in 
figure 6, there is deflexion of the outer dye lines just as is found with the classical 
Taylor column. With this column defined as before as the upright cylinder 
circumscribing the obstacle, there is flow through the column ‘walls’ for all 
heights and a deceleration of the flow within the column. Observations (Davies 
1971) have shown that the magnitude of this deceleration was strongest near 
the obstacle and became weaker with increasing height, for all S. Just  as with 
the S = 0 case the form of the flow within the column was three-dimensional 
with observable vertical motions accompanying any horizontal distortion of dye 
lines. Inside the column interior the pronounced deflexion and spreading out of 
dye lines, a characteristic of the S = 0 flow patterns, was seen to vary con- 
siderably with z and, in particular, the secondary flow observed in S = 0 ex- 
periments directed from the left rear of the column towards the interior appeared 
much weaker or indeed absent when the fluid was stratified. 

The closest similarities in S = 0 and S + 0 flow patterns were seen for lowest 
values of z, i.0. at heights just above the obstacle, such as z = 0.1 cm on figure 6. 
For such positions the dominant secondary flow appeared to be analogous to  the 
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z=0.1 cm 

z=63  cm 

Z= 2.0 cm z= 3.9 ern 

u 
z= 11.6 cm 

FIGURE 6. Horizontal flow patterns for S = 0.12 a t  various heights above the obstacle. 
Direction of flow is from left to right as indicated. Sphere radius a is 1.9 cm. 

I z=0.1 ern 
2=2.0 cm z=3.9 cm 

z= 9.0 ern z=11,6crn 
FIGURE 7. Horizontal flow patterns for S = 0.13. Other conditions as in figure 6. 
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z=O.1 cm 2=2.0 cm 

_----- 

ZT- 
z=6.5 cm z=9.0 cm 

53 z=3.9 cm 

z= 14.1 cm 

FIGURE 8. Horizontal flow patterns for S = 0.16. Other conditions as in figure 6. 

_- -- - 1.4 cm z=3.9 cm 

I 
:=6.5 cm 

:=Y.O cm Z= 11.6 cm L= 14.1 cm 

FIGURE 9. Horizontal flow patterns for S = 0.26. Other conditions as in figure 6. 
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flow fifor S = 0. As the value of z increased, the deflexions became less pronounced 
until the flow state approached a uniform streaming across the column, with 
very little distortion or deceleration of dye lines taking place. The value of x 
at which this flow was observed was dependent upon the value of S ,  as can be 
seen from figures 6-9. 

Figures 6-9 also show that, where there was marked steering of the flow by the 
obstacle, the associated secondary flow within the column was, in some sense, 
simpler than in the unstratified case. In particular there appeared to be no 
strong reverse flows analogous to fi and f3 in the interior, even very near the 
obstacle or for low values of S (say S < 0.1). The slow transport of fluid out 
through the rear wall of the column is strongly similar to the S = 0 behaviour. 
This feature became less pronounced as the deflexion of penetrating dye lines 
decreased (see figures 6 and 9). 

5.1. Vertical motion in the column interior for S + 0 

As in the unstratified case, motions in the interior of the column were three- 
dimensional with dye lines trying to follow the hemispherical shape of the 
obstacle whilst undergoing horizontal distortion. Photographs of this vertical 
motion for several values of S can be seen on figure 10 (plate 2).  It was found that 
for values of S greater than about S = 0.15 the amplitude of the vertical motion 
in the column interior was susbstantially less than the amplitude of such motion 
for S = 0, at the same reference height above the obstacle. At heights of one sphere 
radius or more above the obstacle, vertical distortions were very small and 
difficult to measure accurately for the highest values of S. However, for values of 
S less than S = 0.1, the attenuation with height of the normalized vertical dis- 
placement, r/a,  was measured for three values of S. Figure 11 shows the form 
of this attenuation for values of S of 0.07, 0.08 and 0.09 respectively. The S = 0 
case is shown for comparison. Reference to figure 11 shows that, whilst its 
magnitude has been reduced, the form of the decay of r/a with height is essentially 
the same as when the fluid is unstratified. In  addition, it was observed that 
several features of the vertical motion within the column were common to both 
stratified and unstratified cases: in particular, the downward distortion at the 
left-hand side of the column accompanying the main upward distortion in the 
column interior. 

The effects on the vertical flow brought about by changing S can be illustrated 
by comparing r/a with S for a particular height above the obstacle, x = 2,. To 
incorporate the maximum amount of experimental data it was necessary that 
this value, Z,, should be small, i.e. the comparison should be made near the 
obstacle. Such a comparison is shown on figure 12, which is a plot of r/a against 
S at a height of 0.1 cm above the top of the sphere. Because all points on this 
graph are subject to large error, the curve should be regarded only as an indica- 
tion of the trend of the results. In  spite of the large errors this graph shows that, 
even extremely close to the obstacle, the effect of stratification is felt. As in 
figure 11, even for very small values of S the vertical distortion in the column 
is reduced by an amount of the order of 20 % from its value in the S = 0 case, 
i.e. for values of S where most data has been collected (between S = 0.05 and 0.1). 
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( (1 )  

0 5 0 5 

zla 

FIGURE 11. Plots of q/u against z/a for several values of S. --, S = 0 for comparison. 
(a )  -, S = 0.07; ( b )  -, S = 0.08; -.- 8 = 0.08 linear fit. (c) -, S = 0-09. 

11111 
0 0.1 0.2 0.3 

S 

FIGURE 12. Plot of q/a against S for Zh = 0-1 cm. 

Towards the top of the range of S ,  the graph on figure 12 shows signs of levelling 
off, compared with S < 0.1 behaviour, and for S = 0.24 the maximum distortion 
at x = 2, is of the order of 0-4 times its value for S = 0 at this height. 

6. Summary 
Before proceeding to describe the more quantitative part of the investigation, 

it is of interest here to summarize the results obtained so far. It is convenient, 
for purposes of comparison, to consider separately the horizontal and vertical 
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Plate 2 

I~’I(:ITRE 10. Vt~rtical motion within thr column for ( a )  S = 0, ( b )  S = 0.07 tmd (c )  S = 0.08. 
The direction of flow is from right to  left. 
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FIGURE 15. Dyc line profiles €or ,S = 0.24 for ( a )  ~ / a  = 0.8, ( b )  z /a  = 4.1, ( c )  Z/CL = 4.8, 
((1) Z/rJ = 6.0, ((’) Z/CL = 7.4. 

DAVIES 
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flow patterns in the interior of the Taylor column. Particularly with the horizontal 
flow patterns the limitations brought about by difficulties with the flow visualiza- 
tion were quite serious. Detailed information concerning the interior flows within 
the column was not obtained as with the S = 0 case, and only qualitative con- 
clusions can be drawn. 

It was seen that very near the obstacle and for weak stratifications (i.e. S < 0.1) 
the horizontal flow within the column was very similar to the typical S = 0 
pattern. A strong reverse flow analogous to flow fi in the homogeneous case was 
not observed in this range and it appeared that this flow was either absent or 
very weak. Consequently, pronounced deflexion of dye lines occurred when 
S < 0.1, especially near the obstacle, but dye lines spent much less time in the 
column than in the corresponding S = 0 situation. This is illustrated by the exit 
positions of typical dye lines in the two cases: when S $. 0 this position is a t  the 
rear of the column close to the projection of the undisturbed path line and not 
near the left front of the column as with the S = 0 case. 

The graphs in figures 11 and 12 (direct plot of the variation of 7 with S) ,  in 
spite of the large errors on the points, do give a rather more quantitative indica- 
tion of the effects of stratification. The graphs shown on figure 11 suggest that 
the forms of the decay relationships for S = 0.07, 0.08 and 0.09 are very similar 
and, more significantly, they all show close resemblance to the corresponding 
decay curve for S = 0. The decrease in magnitude of y with S ,  for a given value 
of x ,  is easily seen. On figure 11, graph (a), for example, there is a reduction 7 
of the order of 40 % for all measured x ,  even with slight stratification, a value of 
S = 0-07 corresponding to a density gradient of 2 x lO-*(g/cc) cm-l. It is con- 
cluded that this reduction, as X takes small but non-zero values, is due to the 
presence of the density gradient. Clearly the use of dissolved salt to produce the 
density gradients resulted in an increase in the viscosity of the fluid. However, 
measurements of this increase with salt concentration showed that, in the range 
of S covered by figure 11, this effect was negligible. The negligible effects of 
viscosity as a contributory cause of the observed reduction in 7 is also consistent 
with the results of Hide et al. (1968), who found that an increase in viscosity of the 
fluid gave rise to a shortening in length of the Taylor column, but that the value 
of 7 near the obstacle was “more or less independent of E ” .  Since graphs (a),  ( b )  
and (c) on figure I1 all show appreciable reductions in 7 for all z it is thought that 
this is caused by the presence of the density gradient and is not due, for example, 
to any increase in the viscosity of the fluid. 

7. The length of the Taylor column 
7.1. Experimental observables 

The method adopted as a means of quantifying the strength of a ‘laboratory’ 
Taylor column can be illustrated by reference to figure 13. At some time, say 
t = to, as the obstacle moves along its path a line of dye is produced at  a height 
x = z* above it and approximately two sphere diameters ahead of it. For a given 
S, the degree of distortion of the dye line is indicative of the strength of the column 
at that value of z. For example, in the case of the ‘classical’ Taylor column in 
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FIGURE 13. Distortion of a, line of dye a t  times (a) t = to, ( b )  t = t ,  (classical Taylor column) 
and (c) t = t ,  (no column). The motion of the obstacle is from right to left, as shown. 

a homogeneous fluid, where there is no flow through the column walls, a t  some 
later time t = t, the form of the dye line will be similar to that in figure 13(b). 
In  this case the distortion is independent of z .  In  the other extreme case, if the 
Taylor column is completely absent at  z = z*, the presence of the sphere will 
not be detected and the dye line will remain undisturbed as in figure 13(c). 
Between the extremes illustrated by figures 13 (b )  and (c) there exist distortions 
which depend not only upon z but also upon 8. The strength of the column can 
thus be quantified by the degree of distortion caused to an undisturbed dye line 
for a fixed (t, - to). 

Previous workers have also formulated 'working definitions ' for the existence 
of a Taylor column in a given laboratory situation. For example, Ibbetson (1965) 
used a criterion based upon the magnitudes of the secondary horizontal flows 
(see fs 4.1) in the column interior; in his experiments il Taylor column was said 
to be present if the velocitiesf, andf, were less than some arbitrary value. 

Hide et al. (1968) used the vertical motion in the column interior to measure 
the Taylor column length. By measuring the attenuation of q with z it was found 
that the variation of q could be well-represented by the relationship 

where ( ~ / a ) , = * ~  is the normalized vertical distortion a t  the level z = z,. z, was 
the length of the Taylor column, defined as the value of z/a for which there was 
no vertical distortion. 

The observable adopted in the present experiments and outlined earlier was 
found to be very sensitive. In  particular, the method could indicate the influence 
of the spherical obstacle by the distorted dye line, when vertical distortion could 
not be detected. Furthermore, because of the experimental set-up the method 
was judged more applicable than on based upon the values of f, and f, in the 
present experiments. 

t Different notation from that of Hide, Ibbetson & Lighthill (1965). 



Taplor columns in rotating stratified jluids 707 

FIGURE 14. Schematic plan view of apparatus illustrating dye-line distortion 
created by the passage of the spherical obstacle. 

7.2. Notation 
Figure 14 shows part of a plan view of the apparatus. The spherical obstacle is 
differentially rotated through the fluid on a circular path, centre 0, in the sense 
shown. The basic rotation C2 is in the direction indicated. At some time t = to 
when the centre of the sphere is a t  point T ,  a straight line of dye AB is produced. 
At some time later, t = t,, when the centre of the sphere has reached point T‘, 
the dye line is distorted into a typical profile ACB. The angle subtended a t  0 by 
the arc VC, i.e. the angle through which the line AB has been distorted in a time 
t ,  - to, is denoted by the angle 8. The angle subtended at  0 by the arc V D ,  i.e. the 
angle through which the line AB would have been distorted by a ‘classical’ 
Taylor column, is denoted by So. 

Using this notation, the ‘strength of the Taylor column’ is defined by the 
ratio S/Oo and can thus take values between zero and unity. (Since 8/8, is slightly 
dependent upon 0, a reference value for 8, is necessary for internal consistency; 
the reference value chosen was 0, = 30O.) 

8. Experimental results 
The apparatus used in these experiments has been described in Q 3. The line 

of dye, necessary for measurements of 8/Oo, was produced by the application of 
a voltage pulse on a thin horizontal wire, using the pH technique outlined earlier. 
It was ensured that the nature of the pulses was as standard as possible so that 
any distortion observed could be attributed to the effect of the obstacle and 
not to any differing polarization disturbances at different wires. With the 
pulsing unit used it was possible to vary both the amplitude and duration of the 
pulse. In  this way it was possible to minimize polarization difficulties whilst 
still retaining sufficient dye contrast for photographic measurements to be 
made. 

It was ensured that the parameters 8 and E did not vary between each ex- 
perimental run. The same sphere was used throughout the experiments and both 
the main rotation rate IR and the differential rotation rate w had the same given 

45-2 
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FIGUIXE 17. Plot of 8/8, against z l a  for (a )  S = 0.24, ( b )  S = 0.21, (c) S = 0.16, (d )  S = 0.14, 
( e )  S = 0.115, (f) X = 0.09, (9) S = 0.08, (h) S = 0.07, (i) 8 = 0. 

values in each experiment. The values of the non-dimensional parameters E: and 
E were the same as in the earlier experiments: e = 8.8 x 

Figures 15 and 16 (plates 3 and 4) show the observed dye profiles a t  different 
heights above the obstacle for the cases S = 0.24 and S = 0.115 respectively. 
The differences in magnitude in the distortions as x increases is clearly seen for 
S = 0.24. When z/a takes a value of about 7, any distortion of the originally 
straight dye line becomes difficult to detect. With a lower value of S such as 
S = 0.115 the graduations in 8/0, with height, whilst still noticeable, are com- 
paratively less marked. This is illustrated by comparison of figures 15 (d) and 
l6(e)  for z/a = 6. 

Dye profde observations were taken for each height for several values of 8 
and measurements were made on each to determine the decay rate of 6/0, with 

E = 4.0 x 
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FIGURE 18. Plots of log Oleo against zla for S = 0, S = 0.09 and S = 0.24. 

./a, and the dependence of this decay upon S. As mentioned earlier, it was 
necessary to choose a reference value for 8, so that results from different runs 
could be meaningfully compared. In several cases, for a given (./a, S )  measure- 
ment, profiles were obtained where 0,, differed from the reference value of 
8, = 30". In these cases the values of Ole,, were plotted against 8, and the 
measured value of BIB, for 0, = 30' was obtained. 

8.1. Variation of 8/8, with z/a 
The measured values of 0/0, were plotted against z/a for each S and the graphs are 
shown in figure 17. Since the decay appeared roughly exponential, log 8/8, was 
plotted against ./a, as shown in figures 18-21. It can be seen that the relationship 
between log 8/8, and z/a is reasonably linear throughout the range of S ,  within 
the limits of the experimental error. In  particular, with the exception of the 
graph for S = 0.115 on figure 21 there does not seem to be a systematic trend 
in the nonlinearity as S varies. The departure of the S = 0.115 graph is not 
thought significant since only five points are plotted and the errors for the lower 
./a points are high. The good agreement with an exponential attenuation of 0/0, 
with height, as illustrated by figures 18-21 enabled an e-folding length t o  be 
defined for each 8. In  order to do this, the best straight lines to the plotted points 
on figures 18-21 were drawn, and the gradients and intercepts of these lines 
determined by a least-squares-fit procedure. This procedure incorporated 
weightings assessed from the standard errors on the points. 
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zla 
FIGURE 20. Plots of log 8/8, against z/a for S = 0.07 and S = 0.21. 
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Z/a 

FIGURE 21. Plots of logO/O, against z/a for S = 0.115 and S = 0.14. 

S zeta s Z d Q  

0 141.0 21.0 0.14 6.0 k 0.9 
0.07 52.5 f 7.8 0-16 4.8 f 0.4 
0.08 18.5 f 2-7 0.2 1 4.0 k 0.5 
0.09 10.2 f 1.1 0.24 4.8 k 0.6 
0.1 15 9.7 f 1.0 

TABLE 1. The length of the Taylor column for various values of S. (Note that for some S ,  
z, + H ,  where His the height of the fluid region above the top of the sphere. HI" = 9.0.) 

8.2. Variation of ze/a with S 

Using the gradients of the best straight-line fits shown on figures 18-21 an e- 
folding value of z/a, denoted by ze/a, was calculated for each case. Formally, 
.,/a is defined as the normalized height above the top of the obstacle for which 
the value of 8 is l / e  times its value 8, at the top of the obstacle, for a reference 
value of 8, = 30". In these experiments ze/a, the e-folding length, is taken as an 
arbitrary measure of the length of the Taylor column. The effects of density 
stratification upon the Taylor column, therefore, are assessed by the effect on 
.,/a of varying S. The values of ze/a calculated from the best least-squares fits 
to the graphs in figures 18-21 are given in table 1. 
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FIGURE 22. Plots of u/U against z/a for ( a )  S = 0.16, ( b )  S = 0.14, 

(c) S = 0,115, (d )  S = 0.09, ( e )  S = 0.08. 

8.3. Velocity measurements 

It was possible in some cases to obtain experimentally some estimates of the mean 
flow velocities within the column at different heights above the obstacle. Con- 
sidering a frame of reference fixed in the obstacle, the velocities were measured 
by recording the motion of the peak of the dye profile for specified time intervals. 
Because of the experimental configuration, which necessitated a complicated 
perspective correction procedure, and the short time intervals involved, the 
velocity measurements were subject to large errors. For a given X and z/a flow 
velocities could vary considerably within the column with appreciable accelera- 
tions and decelerations taking place. In  order to make comparisons between 
interior flow velocities in different experiments, therefore, it was necessary 
either to compare velocities for certain specified regions of the column or to 
compare mean velocities across the interior. The latter scheme was adopted. 

Measurements of these mean velocities u, normalized with the obstacle velocity 
U ,  are presented in figure 22 for values of S = 0.16, 0.14, 0.115, 0-09 and 0.08. 
A frame of reference fixed in the tank is used so that u /U = 0 when no Taylor 
column is present and u/U takes a value of unity for a ‘classical’ Taylor column. 
It is emphasized at  this stage that the graphs in figure 22 are plotted from 
measured values of ulU as distinct from the calculated velocities appearing in 4 8.4. 
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FIGURE 23. Plot of e-folding length Ala, against stratification parameter S. 

The large errors in the points and the scatter of the data make it rather difficult 
to make any precise estimate of the form of the graphs, but in all cases it can 
be seen that the gradients of the graphs become steeper as S increases. In  this 
respect these results show good agreement with the results on the vertical motion 
within the column for zero and non-zero 8, as reported in $5.1. 

Direct comparison of the u/U and 8/8, results is not possible, though the 
relationship between them is simply calculated. Employing the same notation 
as before, and defining a quantity a such that 

a = (e,-e)-p, 

alp + e,le = ulu( 1 + alp). 
where 
that, for positive a, 

Thus, if a = 0, i.e. if the dye being observed is still within the column, the 
quantities 8/8, and u/U are completely equivalent. Alternatively, when the 
value of 0, is chosen such that the peak of any distorted pro6le is far downstream 
of the obstacle, a is large and O/8, is considerably less than u /U.  

is the angle subtended by the sphere at 0 (see figure 14), it can be shown 

8.4. Variation of Taylor-column length with S 
It has been shown in $8.2 that the e-folding length ze/a provides a convenient 
measure of the Taylor-column length. However, though all sets of data presented 
on figures 18-2 1 were internally standardized by the choice of a reference value 
of O,, it is clear that the results obtained are dependent upon the specifically 
chosen B,,, i.e. 0, = 30". The effect of a change of 8, on the trend of these results 
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is not serious provided that 8, is chosen such that (8, - 8 )  N p. However, though 
the trend is not affected, the ‘levelling-off’ value of ze/a at high X is sensitive to 
changes in 0,. I n  order to give the results a general applicability the data were 
recalculated in terms of velocities using the relationships 

i+p/e for e,-e > p ,  
(‘/u)calc = { 8,,8 for 6, - 8 < /I. 

The above notation is used for the calculated velocities in order to avoid con- 
fusion with u/ U ,  the quantity actually measured experimentally, as described 
in $ 8.3. Plots of (u/U)c,lc against z, for all the values of S, were made and, as 
in the graphs of 8/8, against z, an exponential curve through the points was 
found to be the best fit. Thus, proceeding as before, e-folding lengths were 
obtained from the ( U / U ) ~ & , ~  graphs. Figure 23 shows a plot of h/a, the e-folding 
length based on the calculated velocity, against S. Each data point (and its 
associated error) on this figure has been computed from between 30 and 40 
experimental measurements. 

9. Summary and discussion 
Using the method formulated in 5 7.1, those modifications to A, the length of 

a Taylor column, caused by various degrees of salt-produced density stratification 
have been investigated. The results are shown on figure 23. This graph shows 
that h was severely reduced from its X = 0 value by even very slight stratification. 
For values of less than about 0.15, h was strongly dependent upon 8. For example, 
a value of S = 0.07, corresponding to a density difference of 5 x 10-3gm/cc in 
a depth of 30 cm, reduced the value of h by a factor of about three from its ‘homo- 
geneous ’ value. The steep behaviour of the graph is observed up to values of h of 
about 0.1, where the length of the column is of the same order as the depth of the 
tank. As S increases, the reduction in h becomes more gradual until, after values of 
S of about 0.15, errors on the graph and approximations in the definition of h 
make it difficult to detect any downward trend in the results for increasing S. 
Between S = 0.15 and X = 0.25 the length of the column, as measured by A, 
remains essentially constant, having a value of about five sphere radii. 

It should be noted that though h is reduced by a factor of about 30 in the range 
0 < S < 0.15, the e-folding length observed at  high Xis still of the order of half 
the depth of the tank. In  particular, during the experiments no dye profile was 
observed at any height for any S for which 8 = 0. 

Hide (1971) has introduced the concept of an axial coherence length to de- 
scribe the extent to which flow patterns at  different heights are steered by bottom 
topography. From the velocity measurements described in $ 8.3 and the measure- 
ments of vertical interior motion described in $5.1 it is possible to make estimates 
of typical coherence lengths in these experiments. Under the conditions % 1, 
E < 1 and E < 1 it is possible to obtain, from equations (2.6)-(2.8), the thermal 
wind relationship 
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Considering a co-ordinate system in which u is taken along the local horizontal 
flow direction and v is thus zero, (9.1) is written, using (2.8), as 

If two levels defined by z = 0 and z = 2 are situated such that the local direction 
of horizontal flow at z = 2 makes a small angle $r with the local direction of 
horizontal flow at z = 0,  it can be easily shown that 

Using (9.2) and (9.3), we obtain, after some manipulation, 

I a$ i w u S 2  
C ax a u u  C '  
-=-=---- (9.4) 

where C is the Hide coherence length (a,  U ,  S and E are the sphere radius, stream 
velocity, stratification parameter and Rossby number respectively, as before). 

If w/u - 7/2a (see $ 5.1) then an order-of-magnitude estimate for C, in terms 
of quantities measured in the experiments, can be obtained. For the case of 
S = 0.1, typical values of 712a and Ulu for a height of about 4a above the 
sphere are 

Thus for B - an estimated value of C would be C N 5a. As an order-of- 
magnitude estimate this is in reasonable agreement with the qualitative results 
described in $5, suggesting that, within this range of S, the flow behaviour in 
certain regions is well represented by the thermal wind equations. 

Linear inviscid theory has been applied to the transverse motion of an obstacle 
through a rotating, stratified, unbounded fluid (Lighthill 1967; Hide 1963; Rao & 
Rao 1971). In  the parameter range of the experiments described here (i.e. e2 < 1, 
e2 < S2)  it is found that the disturbance produced by the motion of the obstacle 
has an exponential attenuation in the vertical direction of scale A*, where A* 
is given by 

(9.5) 

In  this expression, L is the horizontal length scale of the obstacle and thus the 
quantity h*/L, by definition, can be thought of as being analogous to the quantity 
h/a in figure 23. In  the parameter range of the present experiments (s2 < 1, 
e2 < S2), therefore, we expect a l/S decay for A, according to linear inviscid 
theory. The decay shown by figure 23 is clearly much steeper than 11s. However, 
since the theory of Lighthill (1967) is essentially a far-field theory, which is not 
expected to  describe the behaviour of the fluid near to  the forcing region, the 
discrepancy above is not too surprising in the present experiments. 

It was not possible to investigate equation (9.5) very fully: s2 was always much 
less than S2 and hence the effect upon h of varying E ,  for constant S, could not 
be detected. Efforts were made to study the regime where e2 -+ S2 but in order 
to keep the Ekman number constant this meant moving the obstacle very 
quickly or reducing the density gradient. Mixing problems inherent in the latter 
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and violation of Taylor-Proudman conditions with the former rendered the 
efforts unsuccessful. 

It would appear from the studies of horizontal flow patterns, vertical dis- 
tortion measurements and velocity measurements that the information obtained 
is internally consistent, in the sense that even the slightest stratification has been 
shown to affect strongly all these characteristic features of the flow. This is most 
clearly seen on figure 23 but is also evident on figure 12, allowing for the scaling 
differences between the two graphs. 

In  the case S = 0 certain properties of the Taylor column’s structure may be 
inferred from the measurements reported in $04 and 8. The length scale x, based 
on measurements of the vertical motion in the column interior, is seen from 
figure 11 to be of the order 13a, whilst A, from figure 23, is about 1300,. That is 
to say, there is one region in the column in which there exist relatively strong 
horizontal and vertical motions, and another region in which the flow is affected 
by the presence of the obstacle though essentially no vertical motion is observed. 
The measurements mentioned earlier indicate that the vertical extent of these 
two regions differs by an order of magnitude. In  view of this difference, therefore, 
it becomes very important when referring to Taylor columns in laboratory or 
geophysical situations, to specify precisely which particular Taylor-column 
definition is being used. This problem of definition, briefly indicated in the intro- 
ductory remarks of 8 7.1, has recently been discussed by Hide (1971). 

Following the definition adopted in the present experiments and regarding h 
as the Taylor-column length, it is of interest to note that the value obtained in 
the S = 0 case is of the same order as the theoretical estimate ( l / ~ )  of Lighthill 
(1967) for the Rossby number ( E  = 8.8 x 10-3) in these experiments. This 
theoretical estimate, though based on an inviscid model in which the column’s 
extent is limited by inertial effects only, does nevertheless provide an upper 
limit for comparison with the present experiments. The importance of the role 
played by viscous forces can be gauged from the theoretical condition obtained 
by Jacobs ( 1 9 6 4 ~ ) ;  i.e. inertial effects can be neglected if E and E satisfy the 
inequality E < E+. From 0 8 it is seen that the quantities E and E4 are of the same 
order in these experiments. In  view of the good agreement between h and l /c 
(Lighthill 1967)’ this therefore suggests that viscous effects have not strongly 
affected the Taylor-column length in the S = 0 case. 
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